
Building Trust
Use Cases and
Implementation of TPM 2.0 in
Embedded Linux Systems

1

I’m Anna-Lena Marx

Senior Embedded Systems Engineer, Karlsruhe (Germany)

● with inovex since 2015

● has a Master’s degree in Embedded Systems

● studies Electrical Engineering as a hobby

#embeddedsystems #yocto #linux #kernel #zephyr #aosp

Hello,

anna-lena.marx@inovex.de

+49 1523 / 31 81 26 0

@anna-lena-marx-embedded

@Allegra42

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

2

TPM 2.0
101

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

3

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

What’s a TPM?

Trusted Platform Module

specified by the Trusted Computing Group
(TCG)

-> ISO/IEC 11889:2015

4

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

What’s a TPM?

● often referred to as
○ a cryptographic co-processor
○ a hardware security module (HSM)
○ a hardware root of trust (HRoT)

e.g. ARM TrustZone
Application, used in

Smartphones

e.g. Intel Platform Trust
Technology (PTT)

https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_DR02web.pdf
5

https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_DR02web.pdf

What’s a TPM?

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

6

 TPM 2.0

 Cryptographic Co-Processor
● Random Number Generator (RNG)
● Key Generator
● Hash-Functions and Hash Based

Message Authentication Code
(HMAC)

● Algorithms
SHA-1, SHA-256, SHA-384, RSA,
ECC, AES, SM4, HMAC, XOR

 Permanent Memory
● Seeds
● Templates
● Persistent key slots
● Platform Configuration Register

(PCR)
● Counter and indexes (NVRAM)

Endorsement
Seed/Key

Platform
Seed/Key

Owner
Seed/Key

 Volatile Memory
● Authorization sessions
● Active keys

NULL Key
(random seed)

TPM Capabilities

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

$ sudo tpm2_getcap -l
- algorithms
- commands
- pcrs
- properties-fixed
- properties-variable
- ecc-curves
- handles-transient
- handles-persistent
- handles-permanent
- handles-pcr
- handles-nv-index
- handles-loaded-session
- handles-saved-session
- vendor

$ sudo tpm2_getcap algorithms
rsa:
 value: 0x1
 asymmetric: 1
 symmetric: 0
 hash: 0
 object: 1
 reserved: 0x0
 signing: 0
 encrypting: 0
 method: 0
sha1:
 value: 0x4
 asymmetric: 0
 symmetric: 0
 …

$ sudo tpm2_getcap ecc-curves
TPM2_ECC_NIST_P256: 0x3
TPM2_ECC_NIST_P384: 0x4

tpm2_getcap is part of https://github.com/tpm2-software/tpm2-tools
7

https://github.com/tpm2-software/tpm2-tools

Also specified by TCG
● TPM 2.0 Library Specification
● TPM Software Stack (TSS)

Several implementations available:
● tpm2-tss
● wolfTPM
● Official TPM 2.0 Reference Implementation
● TSS.MSR
● …

System API (SAPI)

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Software Implementations

Enhanced System API (ESAPI)

TPM Command Transmission Interface
(TCTI)

Feature API (FAPI)

TPM Access Broker (TAB)

Resource Manager

Device Driver

Handles ownership, controls
and synchronizes

multiprocess access

Hardware Abstraction Layer

8

https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/work-groups/software-stack/
https://github.com/tpm2-software/tpm2-tss/tree/master
https://github.com/wolfSSL/wolfTPM
https://github.com/Microsoft/ms-tpm-20-ref
https://github.com/Microsoft/TSS.MSR

https://tpm2-software.github.io/
9

https://tpm2-software.github.io/

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms
Keys

● Asymmetric keys with several algorithms
○ Create primary keys (hardware based RNG)
○ Load (import) external keys (public and private)
○ Encrypt / decrypt
○ Signing / verify signatures
○ Attestation tasks

● Private keys of primary key pairs never leave the TPM!
○ Primary keys are regenerated from the seed
○ Child keys are encrypted by primary keys (key wrapping)

-> can be stored outside

Seed

Primary Key

Child Key 1 Child Key 2

Child Key 3

Primary keys wrap
(encrypt) child

keys!
Child keys can
leave the TPM.

10

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms
Key Hierarchies

Four hierarchies with different seeds and authorizations
● Seed acts as cryptographical root of a hierarchy

(Never leaves the TPM!)
● Each hierarchy has an associated proof value

○ Derived from the seed or independently generated
○ Verify data supplied to the TPM was initially generated by itself

(e.g. used for HMAC)

● Endorsement hierarchy
○ Controlled by TPM manufacturer / privacy owner
○ Privacy sensitive
○ Used to validate the authenticity of a TPM

● Platform hierarchy
○ Controlled by platform manufacturer / OEM

who ships and controls the early bootcode e.g. UEFI secure boot
● Owner hierarchy

○ For user owned objects
● NULL hierarchy

○ Random seed at every power cycle
○ Used for sessions, digest and HMAC state, RNG, …

Seeds

Endorsement Platform

Owner NULL

Primary Key 1 Primary Key 2

Child Key 1.1 Child Key 2.1 Child Key 2.2

Child Key 2.3

11

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms
Platform Configuration Registers (PCRs)

● 24+ dedicated registers, holding a hash digest

● Cryptographically measure and record software states

● Content can only be cleared under strict conditions
○ Most PCRs can only be reset at system boot / power on
○ Some can only be modified in a specific TPM locality level

● PCRs are not written but extended
○ Preserves existing information
○ The order of extend operations influences the resulting end digest!
○ PCRn = HASH(PCRn-1 | NewInput)

sudo tpm2_getcap pcrs
selected-pcrs:
 - sha1: []
 - sha256: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
 - sha384: []

12

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms
Platform Configuration Registers (PCRs)

https://uapi-group.org/specifications/specs/linux_tpm_pcr_registry/
13

https://uapi-group.org/specifications/specs/linux_tpm_pcr_registry/

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms
Platform Configuration Registers (PCRs)

https://trustedcomputinggroup.org/wp-content/uploads/RegistryOfReservedTPM2HandlesAndLocalities_v1p1_pub.pdf

RTM
Root of Trust for Measurement

Resets all PCRs at system start
Extends hash in PCR 0-7

Operating system works in
locality 4

Can only reset PCR 16 and 23

14

https://trustedcomputinggroup.org/wp-content/uploads/RegistryOfReservedTPM2HandlesAndLocalities_v1p1_pub.pdf

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms
Platform Configuration Registers (PCRs)

$ systemd-analyze pcrs
NR NAME SHA256
 0 platform-code 0a2310be6f1890d486e54be738ace4e4ca6e5a42d8a3405840ff1f3956359500
 1 platform-config 5e006c735eadd81dda0c3e54c18da347b1c4b2dbd937ce4338edaf7b210e56e1
 2 external-code 3b617409aac07541af09a3dc8fa2adde0c1ffcc1416946dcc850fac0439b1864
 3 external-config 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969
 4 boot-loader-code f6bf3e0ef200d74c6e2aee8d2c45fc6c78937ffcc6f0f73fb41559f0b7a13e44
 5 boot-loader-config e0c17ac5f024013317eec9a029e23c127c7fa8ec6e33ea5b3eaab8ff72fc9c45
 6 host-platform 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969
 7 secure-boot-policy 51f40d32ebe8d10b28aecf9839f9f28bb2ca122d2f394a742369b48f5da70cca
 8 - 00
 9 kernel-initrd f4ada4804f6a426a1f69c5b602e72b32dd449fd2204d4ca8bf950abceda27831
10 ima 00
11 kernel-boot 00
12 kernel-config 762d9730d8a38ff63d3ebfc3029d18c8bacc683edd08a7049bf8aec6c9a3265a
13 sysexts 00
14 shim-policy 00
15 system-identity 00
16 debug 00
17 - ff
18 - ff
19 - ff
20 - ff
21 - ff
22 - ff
23 application-support 00

$ sudo tpm2_pcrread
 sha1:
 sha256:
 0 : 0x0A2310BE6F1890D486E54BE738ACE4E4CA6E5A42D8A3405840FF1F3956359500
 1 : 0x5E006C735EADD81DDA0C3E54C18DA347B1C4B2DBD937CE4338EDAF7B210E56E1
 2 : 0x3B617409AAC07541AF09A3DC8FA2ADDE0C1FFCC1416946DCC850FAC0439B1864
 3 : 0x3D458CFE55CC03EA1F443F1562BEEC8DF51C75E14A9FCF9A7234A13F198E7969
 4 : 0xF6BF3E0EF200D74C6E2AEE8D2C45FC6C78937FFCC6F0F73FB41559F0B7A13E44
 5 : 0xE0C17AC5F024013317EEC9A029E23C127C7FA8EC6E33EA5B3EAAB8FF72FC9C45
 6 : 0x3D458CFE55CC03EA1F443F1562BEEC8DF51C75E14A9FCF9A7234A13F198E7969
 7 : 0x51F40D32EBE8D10B28AECF9839F9F28BB2CA122D2F394A742369B48F5DA70CCA
 8 : 0x00
 9 : 0xF4ADA4804F6A426A1F69C5B602E72B32DD449FD2204D4CA8BF950ABCEDA27831
 10: 0x00
 11: 0x00
 12: 0x762D9730D8A38FF63D3EBFC3029D18C8BACC683EDD08A7049BF8AEC6C9A3265A
 13: 0x00
 14: 0x00
 15: 0x00
 16: 0x00
 17: 0xFF
 18: 0xFF
 19: 0xFF
 20: 0xFF
 21: 0xFF
 22: 0xFF
 23: 0x00
 sha384:

15

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

16

 TPM 2.0

 Cryptographic Co-Processor
● Random Number Generator (RNG)
● Key Generator
● Hash-Functions and Hash Based

Message Authentication Code
(HMAC)

● Algorithms
SHA-1, SHA-256, SHA-384, RSA,
ECC, AES, SM4, HMAC, XOR

 Volatile Memory
● Authorization sessions
● Active keys

 Permanent Memory
● Seeds
● Templates
● Persistent key slots
● Platform Configuration Register

(PCR)
● Counter and indexes (NVRAM)

Endorsement
Seed/Key

Platform
Seed/Key

Owner
Seed/Key

NULL Key
(random seed)

How can we trust a TPM?

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM manufacturer

TPM manufacturing process

System / Platform
manufacturing process

Bootcode / Secure Boot
provisioning

17

Building up a root of trust
is rather about processes
than a cryptographical
issue.

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

18

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

How can we trust a TPM?
Verify a TPM’s authenticity using the Endorsement Hierarchy

● The Endorsement Hierarchy is controlled by the TPM manufacturer
● Primary keys in this hierarchy are constrained to an authentic TPM attached to an authentic platform

○ Verify a TPM’s authenticity
○ Identify a machine

Privacy concern: All child keys generated from an EK can be correlated to a single TPM

● Endorsement Key (EK)
○ A primary key generated using the TCG’s EK key template (available for RSA and ECC)
○ Seed is fixed, can not be cloned -> EK can be regenerated

● EK certificate
○ Pre Installed during manufacturing

19

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

How can we trust a TPM?
Verify a TPM’s authenticity using the Endorsement Key

 Check authenticity

1. Endorsement hierarchy on TPM
a. Generate endorsement key pair tpm2_createek
b. Read public key tpm2_readpublic
c. Obtain EK certificate tpm2_getekcertificate

2. Obtain vendor intermediate CA for your TPM (website)

3. Verify
a. EK public key (1. b) matches the one in the EK certificate (1. c)

openssl rsa -pubin -in <ek-public-key> -text -noout
x509 -in <ek-certificate> -inform DER -noout -text

b. EK certificate (1. c) is valid with the root/intermediate/both CA from the vendor (2.)
openssl verify -CAfile <vendor-root-ca> -untrusted <vendor-intermediate-ca> <ek-certificate>
openssl verify -verbose -CAfile <vendor-intermediate-ca> <ek-certificate>

20

TPM 2.0
in Practice with Yocto

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

21

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Establish a Chain of Trust
Secure Boot on x86 Platforms with meta-secure-core/meta-efi-secure-boot and Mender

22

● Ensure a device runs a with a trusted, signed and untampered
○ bootloader
○ kernel
○ and similar binary blobs

● Establish a trusted environment for later (critical) applications and tasks
○ disabling secure boot can be detected during runtime

ARM devices may use some special memory
areas for storing secure boot / verified boot
certificates that can only be written once.

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Establish a Chain of Trust
Secure Boot on x86 Platforms with meta-secure-core/meta-efi-secure-boot and Mender

23

● grubx64.efi.p7b
● grub.cfg.p7b
● boot-menu.inc.p7b
● bzImage.p7b

boot into UEFI with
secure boot enabled

load boot files
from /boot/efi

check signatures

boot kernel

error screen

/boot/efi

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Establish a Chain of Trust
Secure Boot on x86 Platforms with meta-secure-core/meta-efi-secure-boot and Mender

24

● Last tested with kirkstone

● Uses meta-secure-core/meta-efi-secure-boot
○ grub-efi, efi-tools, mokutils, shim, …
○ Patches for GRUB
○ Signing tasks for kernel and bootloader
○ Utilizes TPM for keys and certificates
○ Certificate provisioning step automated during bootup

● Most documentation describes the process with initramfs
● Further hints for Mender with Secure Boot (kirkstone):

https://hub.mender.io/t/mender-and-efi-secure-boot-on-intel-corei7-64/4862
● Kernel within the boot partition is not managed by Mender!

○ Use Mender state scripts to update kernels

https://github.com/Wind-River/meta-secure-core/tree/kirkstone/meta-efi-secure-boot
https://hub.mender.io/t/mender-and-efi-secure-boot-on-intel-corei7-64/4862

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Establish a Chain of Trust
Secure Boot on x86 Platforms with meta-secure-core/meta-efi-secure-boot and Mender

25

MACHINE_FEATURES:append = " \
 efi \
 tpm2 \
"
DISTRO_FEATURES:append = " \
 security \
 tpm2 \
 efi-secure-boot \
"

MOK_SB = ""
SIGNING_MODEL = "user"

IMAGE_INSTALL:append = " \
 tpm2-tools \
 libtss2-tcti-device \
 efitools \
 seloader \
 update-signed-kernel-state-script \
"

Deploy kernel and signature to boot partition.
They cannot be verified on rootfs partition.
#
Mender processes IMAGE_BOOT_FILES and has some issues with multiline parsing
IMAGE_BOOT_FILES:append = " ${KERNEL_IMAGETYPE} ${KERNEL_IMAGETYPE}${SB_FILE_EXT}"

image.bbdistro.conf

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Establish a Chain of Trust
Secure Boot on x86 Platforms with meta-secure-core/meta-efi-secure-boot and Mender

26

…

mender_kernel_path=""
if ["${drop_to_grub_prompt}" = "no"];
then
 search --no-floppy --label --set=root boot
 if linux "${mender_kernel_path}/${kernel_imagetype}" root="${mender_kernel_root}" ${bootargs};
 then
 if test -n "${initrd_imagetype}" -a test -e "${mender_kernel_path}/${initrd_imagetype}";
 then
 initrd "${mender_kernel_path}/${initrd_imagetype}"
 fi
 maybe_pause "Pausing before booting."
 boot
 fi
 maybe_pause "Pausing after failed boot."
fi

overwritten
90_mender_boot_grub.cfg

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Make use of PCRs
Encrypt a userdata partition on first boot and use a TPM 2.0 device as key

Bind the encryption to TPM PCR(s)

● Usually PCR 7 (secure boot state) or 0-7

● Encrypted partition without the need for user interaction (entering a password)

● If PCR(s) change, data can not be unlocked with TPM
○ Stays locked if a device gets tampered
○ Can be restored with backup password

27

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Make use of PCRs
Encrypt a userdata partition on first boot and use a TPM 2.0 device as key

28

systemd service

- triggers encryption
- runs before data.mount

encryption script

- write LUKS header on existing partition
 cryptsetup reencrypt --encrypt

- actual online encryption
 cryptsetup reencrypt

encryption script

- link TPM to LUKS device
 systemd-cryptenroll

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Make use of PCRs
Encrypt a userdata partition on first boot and use a TPM 2.0 device as key

29

PACKAGECONFIG:append:pn-cryptsetup = " cryptsetup veritysetup udev luks2"
PACKAGECONFIG:append:pn-systemd = " cryptsetup tpm2"

distro.conf

do_install:append() {
 install -d ${D}${libdir}/cryptsetup
 install -m 0755 ${WORKDIR}/build/libcryptsetup-token-systemd-tpm2.so \
 ${D}${libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so
}

FILES:${PN}:append = " \
 ${base_libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so \
 ${libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so \
"

systemd_%.bbappend

Only needed with kirkstone!

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Make use of PCRs
Encrypt a userdata partition on first boot and use a TPM 2.0 device as key

30

- UUID=<data-uuid> /data ext4 rw 0 2

+ /dev/mapper/data /data ext4 rw 0 2

fstab

data UUID=<data-uuid> none tpm2-device-auto,tpm2-pcrs=7

crypttab

Mender also modifies fstab in a
ROOTFS_POSTPROCESS_COMMAND

At early boot and when the system manager
configuration is reloaded, /etc/crypttab is

translated into systemd-cryptsetup@.service
units by systemd-cryptsetup-generator(8).

echo "Generating a new key..."
/usr/bin/openssl rand -base64 44 > ${tmp_key_file}

echo "Writing encryption headers..."
/bin/cat "${tmp_key_file}" | /usr/sbin/cryptsetup reencrypt --encrypt \
--type luks2 --key-slot=1 --batch-mode --init-only --reduce-device-size 32M
--offset="${OFFSET}" "${data_dev}" data

Enrolling the TPM2 integration only works after the online encryption step
is finished.
echo "Encrypting the data partition..."
/bin/cat ${tmp_key_file} | /usr/sbin/cryptsetup reencrypt \
--offset="${OFFSET}" "${data_dev}"

echo "Deploying TPM2 keys..."
/usr/bin/systemd-cryptenroll --tpm2-device=auto --tpm2-pcrs=7 \
--unlock-key-file=${tmp_key_file} "${data_dev}"

encrypt-data.sh

https://www.freedesktop.org/software/systemd/man/latest/systemd-cryptsetup-generator.html#

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

More ideas

● Utilize the Linux Integrity Measurement Architecture - maybe together with keylime.dev

● Store sensitive counter or read-only information in NVRAM

● Use TPM backed keys for
○ SSH
○ SSL
○ your application

● Or does your stack already utilize a TPM but you did not know?
○ Azure IoT Edge

31

https://keylime.dev/

TPM 2.0
Recap

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

32

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Recap
Chances and Risks

TPM 2.0 can help trusting devices, e.g. with

● Hardened cryptographic operations and random number generation
● Trusted kernels with secure boot (utilizes the key infrastructure on x86)
● Measure system state and integrity (PCRs)
● Secure, tamper resistant storage for (read-only) information (NVRAM)
● and a lot more

33

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Recap
Chances and Risks

TPM 2.0 devices are affordable, available and well supported

● But integrating one is an active decision in embedded systems

● Just using a TPM is not a no-brainer that makes a device trustworthy
○ Attacks on TPM exist (e.g. I2C/SPI bus sniffing)
○ Who owns and controls the platform?
○ Keys based on the endorsement hierarchy can be correlated to a single TPM
○ Do you trust the TPM vendor, platform manufacturer and the device provisioning?

34

Thank you!

Questions? Anna-Lena Marx

Embedded Systems Engineer

@anna-lena-marx-embedded

@Allegra42

35

Learn more about TPM 2.0

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

● https://trustedcomputinggroup.org/
● Course | Trusted Computing 1101: Introductory Trusted Platform Module (TPM) usage | OpenSecurityTraining2
● Course | Trusted Computing 1102: Intermediate Trusted Platform Module (TPM) usage | OpenSecurityTraining2
● https://github.com/tpm2-software/tpm2-tss
● https://tpm2-tools.readthedocs.io/en/latest/
● https://uapi-group.org/specifications/specs/linux_tpm_pcr_registry/
● https://www.freedesktop.org/software/systemd/man/255/systemd-cryptenroll.html
● https://0pointer.net/blog/authenticated-boot-and-disk-encryption-on-linux.html
● https://0pointer.net/blog/brave-new-trusted-boot-world.html
● https://git.yoctoproject.org/meta-security/tree/meta-integrity/README.md?h=scarthgap

https://github.com/Wind-River/meta-secure-core/tree/scarthgap/meta-integrity
https://ima-doc.readthedocs.io/en/latest/ima-concepts.html

● https://github.com/tpm2-software/tpm2-pkcs11
https://github.com/tpm2-software/tpm2-pkcs11/blob/master/docs/SSH.md

● https://github.com/tpm2-software/tpm2-openssl

36

https://trustedcomputinggroup.org/
https://apps.p.ost2.fyi/learning/course/course-v1:OpenSecurityTraining2+TC1101_IntroTPM+2024_v1/home
https://apps.p.ost2.fyi/learning/course/course-v1:OpenSecurityTraining2+TC1102_IntermediateTPM+2024_v1/home
https://github.com/tpm2-software/tpm2-tss
https://tpm2-tools.readthedocs.io/en/latest/
https://uapi-group.org/specifications/specs/linux_tpm_pcr_registry/
https://www.freedesktop.org/software/systemd/man/255/systemd-cryptenroll.html
https://0pointer.net/blog/authenticated-boot-and-disk-encryption-on-linux.html
https://0pointer.net/blog/brave-new-trusted-boot-world.html
https://git.yoctoproject.org/meta-security/tree/meta-integrity/README.md?h=scarthgap
https://github.com/Wind-River/meta-secure-core/tree/scarthgap/meta-integrity
https://ima-doc.readthedocs.io/en/latest/ima-concepts.html
https://github.com/tpm2-software/tpm2-pkcs11
https://github.com/tpm2-software/tpm2-pkcs11/blob/master/docs/SSH.md
https://github.com/tpm2-software/tpm2-openssl

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Utilize NVRAM storage
For additional device identity, persistent and tamper resistant counters, …

37

tpm2_startauthsession -S session.dat

tpm2_policycommandcode -S session.dat TPM2_CC_NV_Write

tpm2_policynvwritten -S session.dat -L nvwrite.policy c

tpm2_flushcontext session.dat

Establish a session

Not a typo!
c -> clear state

tpm2_nvdefine -s 20 -a "ownerread|authread|policywrite" -L nvwrite.policy

 Output: nv-index: 0x1000000

tpm2_nvreadpublic

0x1000000:

 name: 000bbf41e8a6f49fbbdcf194a41a916126ab8ccbba68bb17ad4058ef3623b3d41bfb

 hash algorithm:

 friendly: sha256

 value: 0xB

 attributes:

 friendly: policywrite|ownerread|authread

 value: 0x60008

 size: 20 …

Define a NV space

Establish the policy session

tpm2_startauthsession -S session.dat --policy-session

tpm2_policycommandcode -S session.dat TPM2_CC_NV_Write

tpm2_policynvwritten -S session.dat c

Write content

tpm2_nvwrite 0x1000000 -i testWrite.txt -P session:session.dat

tpm2_nvreadpublic

0x1000000:

 name: 000bfb12a225aad716468ad1f173cfe31dd7e26e952bf4ea42d91b747e0e6ab194f0

 hash algorithm:

 friendly: sha256

 value: 0xB

 attributes:

 friendly: policywrite|ownerread|authread|written

 value: 0x20060008

 size: 20

 authorization policy:

B7AFECEE9BF7BCBD5078F264DE85F7E361DC84F745DA7EFA34E91FDAF200EE9B

tpm2_nvread -C o 0x1000000 -s 20

 Output: `hello`

Write to NV space

Owner hierarchy (default)

