Building Trust

Use Cases and
Implementation of TPM 2.0 in
Embedded Linux Systems

A
INnovex

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Hello,

I'm Anna-Lena Marx

Senior Embedded Systems Engineer, Karlsruhe (Germany)

e with inovex since 2015
° has a Master's degree in Embedded Systems

e studies Electrical Engineering as a hobby

anna-lena.marx@inovex.de
+49 1523 /318126 0

@anna-lena-marx-embedded #embeddedsystems #yocto #linux #kernel #zephyr #aosp

@Allegra4d2

y
E
n
2. 1

M

i T

t]

I

W

t

i T

X

i V

]

[4
=

I""

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

What's a TPM?

Trusted Platform Module

specified by the Trusted Computing Group
(TCG)
-> ISO/IEC 11889:2015

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

What's a TPM?

e often referred to as
o a cryptographic co-processor
o a hardware security module (HSM)
o a hardware root of trust (HRoT)

TAMPER RESISTANT
HIGHEST HARDWARE CRITICAL SYSTEMS

e.g. Intel Platform Trust
HIGHER HARDWARE GATEWAYS Technology (PTT)

ENTERTAINMENT
NG e.g. ARM TrustZone
Application, used in

TG & Smartphones

PROTOTYPING

CLOUD

HYPERVISOR ENVIRONMENT

https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_DRO2web.pdf

https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_DR02web.pdf

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

What's a TPM?

Permanent Memory
Seeds
Templates
Persistent key slots

. \ Platform Configuration Register
Cryptographic Co-Processor (PCR)

° Random Number Generator (RNG) Counter and indexes (NVRAM)
Key Generator
Hash-Functions and Hash Based
Message Authentication Code
(HMAC)
Algorithms
SHA-1, SHA-256, SHA-384, RSA,
ECC, AES, SM4, HMAC, XOR

Endorsement Platform Owner
Seed/Key Seed/Key Seed/Key

Volatile Memory
Authorization sessions NULL Key
Active keys (random seed)

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM Capabilities

sudo tpm2_getcap -1

- algorithms
commands
pcrs
properties-fixed
properties-variable
ecc-curves
handles-transient
handles-persistent
handles-permanent
handles-pcr
handles-nv-index
handles-loaded-session
handles-saved-session
vendor

$ sudo tpm2_getcap algorithms $ sudo tpm2_getcap ecc-curves
rsa: TPM2_ECC_NIST_P256: 0x3
value: TPM2_ECC_NIST_P384: ox4
asymmetric:
symmetric:
hash:
object:
reserved:

signing:

encrypting:

method:
shal:

value:

asymmetric:

symmetric:

tpm2_getcap is part of https:/github.com/tpm2-software/tpm2-tools

https://github.com/tpm2-software/tpm2-tools

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Software Implementations

Feature API (FAPI)
Also specified by TCG

e TPM 2.0 Library Specification
e TPM Software Stack (TSS) System API (SAPI)

Enhanced System API (ESAPI)

Y

Several implementations available: TEM Command I;aCnTSIT]sqon nterface
e tpm2-tss
e WwolfTPM
e Official TPM 2.0 Reference Implementation Handles ownership, controls
° TSS.MSR TPM Access Broker (TAB) and synchroni,zes
[multiprocess access

Resource Manager

Device Driver

|<+|<+|< |

https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/work-groups/software-stack/
https://github.com/tpm2-software/tpm2-tss/tree/master
https://github.com/wolfSSL/wolfTPM
https://github.com/Microsoft/ms-tpm-20-ref
https://github.com/Microsoft/TSS.MSR

PKCS#11 Interface: tpm2-pkcs1l

/

| TSS Python Bindings: tpm2-pytss |

OpenSSL Engine: tpm2-tss-engine ‘ ’ Device to Human attestation: tpm2-totp ‘ ‘ Command Line Tools: tpm2-tools ‘ SWIG Interfaces: tpm2-swig

™

‘ UEFI TCTI: tpm2-tcti-uefi | l Mssim TCTI: tpm2-tss: tcti-mssim | I Userspace Resource Manager TCTI: tpm2-abrmd: tcti-tabrmd ‘

Ezﬂ TPM 2.0 Simulator | Userspace Resource Manager: tpm2-abrmd |

’ Device TCTI: tpm2-tss: tcti-device ‘

— i

| Kernel Driver: /dev/tpm0 l | mmmm

TPM 2.0 Hardware

https://tpm2-software.github.io/

€ inovex

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms

Keys

e Asymmetric keys with several algorithms

o Create primary keys (hardware based RNG)
o Load (import) external keys (public and private)
o) Encrypt / decrypt
o Signing / verify signatures :
o Attestation tasks Primary keys wrap
keys!
e Private keys of primary key pairs never leave the TPM! E}g‘vlg l‘ﬁgsﬂ‘;";‘v’l‘
o Primary keys are regenerated from the seed .
o Child keys are encrypted by primary keys (key wrapping)

-> can be stored outside

|
|
|
|
v

10

€ inovex

TPM 2.0 Terms
Key Hierarchies

Four hierarchies with different seeds and authorizations
° Seed acts as cryptographical root of a hierarchy
(Never leaves the TPM!)
° Each hierarchy has an associated proof value
o Derived from the seed or independently generated
o Verify data supplied to the TPM was initially generated by itself
(e.g. used for HMAC)

° Endorsement hierarchy

o} Controlled by TPM manufacturer / privacy owner

o Privacy sensitive

o Used to validate the authenticity of a TPM
e Platform hierarchy

o Controlled by platform manufacturer / OEM

who ships and controls the early bootcode e.g. UEFI secure boot

e Owner hierarchy

o For user owned objects
e NULL hierarchy

o Random seed at every power cycle

o Used for sessions, digest and HMAC state, RNG, ...

b4
7/
m
-
-
£

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Seeds

e N

N
S
m
-’
-’
V <

1
1
1
1
1
Y

~
~
~
N

11

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms
Platform Configuration Registers (PCRs)

24+ dedicated registers, holding a hash digest

sudo tpm2_getcap pcrs
selected-pcrs:

- shal: []
- sha2s6: [@, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
- sha384: []

Cryptographically measure and record software states

° Content can only be cleared under strict conditions
o Most PCRs can only be reset at system boot / power on
o Some can only be modified in a specific TPM locality level

PCRs are not written but extended
o Preserves existing information
o The order of extend operations influences the resulting end digest!
o PCR =HASH(PCR__ | Newlnput)

12

PCR#

€ inovex

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms
Platform Configuration Registers (PCRs)

Used by

From Location

UEFI Boot
Component

UEFI Boot
Component

UEFI Boot
Component

UEFI Boot
Component

UEFI Boot
Component

UEFI Boot
Component

UEFI Boot
Component

Measured Objects

Core system firmware executable code

Core system firmware data/host platform
configuration; typically contains serial and
model numbers

Extended or pluggable executable code;
includes option ROMs on pluggable hardware

Extended or pluggable firmware data; includes
information about pluggable hardware

Boot loader and additional drivers; binaries and
extensions loaded by the boot loader

GPT/Partition table

SecureBoot state

Log

UEFI TPM
event log

UEFI TPM
event log

UEFI TPM
event log

UEFI TPM
event log

UEFI TPM
event log

UEFI TPM
event log

UEFI TPM
event log

8

grub

grub @

Linux kernel @

IMA

systemd-stub «”

systemd-pcrphase %’

systemd-stub «’

systemd-stub «’

shim °

UEFI Boot
Component

UEFI Boot
Component

Kernel

Kernel

UEFI Stub

Userspace

UEFI Stub

UEFI Stub

UEFI Boot
Component

Commands and kernel command line

All files read (including kernel image)

All passed initrds (when the new LOAD_FILE2
initrd protocol is used)

Protection of the IMA measurement log

All components of unified kernel images (UKIs)

Boot phase strings, indicating various
milestones of the boot process

Kernel command line, system credentials and
system configuration images

All system extension images for the initrd

“MOK”" certificates and hashes

https://uapi-group.org/specifications/specs/linux_tpm_pcr_registry/

h

t

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms

Platform Configuration Registers (PCRs)

Table 12: Localities Reserved for Platform-Specific Workg

Workgroup Defining the Locality Description of the locality
locality value

PC-Client The Static RTM, its chain of trust and its environment
An environment for use by the Dynamic OS

0216 Dynamically Launched OS (Dynamic OS) *
environment

Auxiliary components
Trusted hardware component

tps://trustedcomputingaroup.org/wp-content/uploads/ReqistryOfReservedTPM2HandlesAndLocalities_vip1_pub.pd

f

RTM
Root of Trust for Measurement

Resets all PCRs at system start
Extends hash in PCR 8-7

Operating system works in
locality 4
Can only reset PCR 16 and 23

14

https://trustedcomputinggroup.org/wp-content/uploads/RegistryOfReservedTPM2HandlesAndLocalities_v1p1_pub.pdf

€ inovex

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0 Terms
Platform Configuration Registers (PCRs)

$ sudo tpm2_pcrread

$ systemd-analyze pcrs

NR

0
1
2
3
4
5
6
7
8

NNNNRRRRERRRBRRRRER
WINRPOOVONOOTULD,WNEREOL

NAME

platform-code
platform-config
external-code
external-config
boot-loader-code
boot-loader-config
host-platform
secure-boot-policy
kernel-initrd

ima

kernel-boot
kernel-config
sysexts
shim-policy
system-identity
debug

application-support

SHA256

0a2310be611890d486e54be738acededcabe5a42d8a340584
5e006c735eadd81ddadc3e54c18da347blc4b2dbd937ced 32
3b617409aac07541af09a3dc8fa2addedclffccl416946dcc
3d458cfe55ccO3ealf443f1562beec8df51c75el14a9fcf9a7
febf3e0ef200d74c6e2aee8d2c45fc6c78937Ffccofof73fk
e0cl7ac5f024013317eec9a029e23c127c7fa8ec6e33eas5bs
3d458cfe55ccO3ealf443f1562beec8df51c75el14a9fcf9a7
51f40d32ebe8d10b28aecf9839f9f28bb2cal22d2f394a742
0000000000000V RVLRBE
f4adad80416a426a1f69c5b602e72b32dd449fd2204d4ca8t
0000000000000V RVVRLRBE
0000000000000V RVRLRBE
762d9730d8a38ff63d3ebfc3029d18c8bacc683edd08a704<
0000000000000V RVRLRBE
0000000000000V RVRLRBE
0000000000000V BE
0000000000000V BE
FFffFfFffrrfffrfrffrrrffrrffrrfffrrffrrrffrrrfrrfies
FFffFfFffrrfffrfrffrrrffrrffrrfffrrffrrrffrrrfrrfies
FFffFfFffrrfffrfrffrrrffrfrffrrfffrrffrrrffrrrfrrffes
FFffFfFffrrfffrfrffrrrffrfrffrrfffrrffrrrffrrrfrrffes
FFffFfFffrrfffrfrffrrrffrfrffrrfffrrffrrrffrrrfrrffes
FFffFfFffrrfffrfrfffrrffrfrffrrfffrrffrrrffrrrfrrffes
0000000000000V BE

shal:

sha256:

0 :
: Ox5E006C735EADD81DDAOC3E54C18DA347B1C4B2DBD937CE4338EDAF7B210ES56E1
: Ox3B617409AACO7541AFO9A3DC8FA2ADDEOCIFFCC1416946DCC850FACO439B1864
: Ox3D458CFE55CCO3EA1F443F1562BEEC8DF51C75E14A9FCFOA7234A13F198E7969
: OxF6BF3EQEF200D74C6E2AEE8D2C45FC6C78937FFCC6FOF73FB41559F0B7A13E44
: OXEOQC17AC5F024013317EEC9A029E23C127C7FA8BEC6E33EASB3EAABSFF72FC9C45
: Ox3D458CFE55CCO3EA1F443F1562BEEC8DF51C75E14A9FCFOA7234A13F198E7969
: Ox51F40D32EBE8D10B28AECF9839F9F28BB2CA122D2F394A742369B48F5DA70CCA
: 9X000000000000000V0VVVVVVERVVVRVVVVRVVVRRVVVRVVVERYVVRNVVORALRD
: OxF4ADA4804F6A426A1F69C5B602E72B32DD449FD2204DACA8BF950ABCEDA27831
: 9xX000000000000000VVVVVVRVVVRVVVVRVVVERVVVEVVVERYVVRVVVORAVRD
: 9X000000000000000VVVEVVVRVVVRVVVVRVVVRRVVVEVVVERYVVRNVVORALRD
: ©x762D9730D8A38FF63D3EBFC3029D18C8BACC683EDDO8A7049BF8AEC6COA3265A
: 9X000000000000000VVRVVVERVVVRVYVVRVVVRNVVVRVVVORYVVRNVVORYLRD
: 9X000000000000000VVVEVVVERVVVRVYVVRVVVERVVVRVVVERVVVRVVVORYVRD
: 9X000000000000000VVVVVVRVVVRVYVVRVVVRRVVVRVVVORYVVRNVVORAVRD
: 9xX000000000000000VVVVVRVVVRVYVVRVVVRRVVVRVVVORYVVRVVVORYLRD
: OXFF
: OXFF
: OXFF
: OXFF
: OXFF
: OXFF
: 9X000000000000000V0VVVVVRVVVRVYVVRVVVEOVVVRVVVEAYVVRNVVORAVRD

WoONOUVDh WNERE

Ox0A2310BE6F1890D486E54BE738ACEAE4ACA6ES5A42D8A3405840FF1F3956359500

sha384:

€ inovex

Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Cryptographic Co-Processor
Random Number Generator (RNG)
Key Generator
Hash-Functions and Hash Based

Message Authentication Code
(HMAC)

Algorithms

SHA-1, SHA-256, SHA-384, RSA,
ECC, AES, SM4, HMAC, XOR

Permanent Memory
Seeds
Templates
Persistent key slots
Platform Configuration Register
(PCR)
Counter and indexes (NVRAM)

Endorsement Platform Owner
Seed/Key Seed/Key Seed/Key

Volatile Memory
Authorization sessions
Active keys

NULL Key
(random seed)

16

€ inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

How can we trust a TPM?

TPM manufacturer

TPM manufacturing process

System / Platform
manufacturing process

Bootcode / Secure Boot
provisioning

Building up a root of trust
is rather about processes
than a cryptographical
issue.

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

How can we trust a TPM?
Verify a TPM'’s authenticity using the Endorsement Hierarchy

e The Endorsement Hierarchy is controlled by the TPM manufacturer
e Primary keys in this hierarchy are constrained to an authentic TPM attached to an authentic platform
o Verify a TPM’s authenticity
o Identify a machine
Privacy concern: All child keys generated from an EK can be correlated to a single TPM
e Endorsement Key (EK)
o A primary key generated using the TCG’s EK key template (available for RSA and ECC)
o Seed is fixed, can not be cloned -> EK can be regenerated
e EK certificate

o Pre Installed during manufacturing

19

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

How can we trust a TPM?
Verify a TPM'’s authenticity using the Endorsement Key

Check authenticity

1. Endorsement hierarchy on TPM

a. Generate endorsement key pair tpm2_createek
b. Read public key tpm2_readpublic
c. Obtain EK certificate tpm2_getekcertificate

2. Obtain vendor intermediate CA for your TPM (website)

3. Verify
a. EK public key (1. b) matches the one in the EK certificate (1. ¢)
openssl rsa -pubin -in <ek-public-key> -text -noout
x509 -in <ek-certificate> -inform DER -noout -text

b. EK certificate (1. c) is valid with the root/intermediate/both CA from the vendor (2.)
openssl verify -CAfile <vendor-root-ca> -untrusted <vendor-intermediate-ca> <ek-certificate>
openssl verify -verbose -CAfile <vendor-intermediate-ca> <ek-certificate>

20

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

TPM 2.0
in Practice with Yocto

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Establish a Chain of Trust

Secure Boot on x86 Platforms with meta-secure-core/meta-efi-secure-boot and Mender

e Ensure a device runs a with a trusted, signed and untampered
o bootloader
o kernel
o and similar binary blobs

e Establish a trusted environment for later (critical) applications and tasks
o disabling secure boot can be detected during runtime

ARM devices may use some special memory

areas for storing secure boot / verified boot
certificates that can only be written once.

22

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Establish a Chain of Trust

Secure Boot on x86 Platforms with meta-secure-core/meta-efi-secure-boot and Mender

boot kernel

boot into UEFI with
secure boot enabled

\ error screen

load boot files
from /boot/efi

grubx64.efi.p7b .
grub.cfg.p7b check signatures

boot-menu.inc.p7b
bzImage.p7b I
/boot/efi
‘v’

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Establish a Chain of Trust

Secure Boot on x86 Platforms with meta-secure-core/meta-efi-secure-boot and Mender

° Last tested with kirkstone

e Uses meta-secure-core/meta-efi-secure-boot

grub-efi, efi-tools, mokutils, shim, ...

Patches for GRUB

Signing tasks for kernel and bootloader

Utilizes TPM for keys and certificates

Certificate provisioning step automated during bootup

o
o
o
o
o

e Most documentation describes the process with initramfs
e Further hints for Mender with Secure Boot (kirkstone):
https:/hub.mender.io/t/mender-and-efi-secure-boot-on-intel-corei7-64/4862

e Kernel within the boot partition is not managed by Mender!
o Use Mender state scripts to update kernels

24

https://github.com/Wind-River/meta-secure-core/tree/kirkstone/meta-efi-secure-boot
https://hub.mender.io/t/mender-and-efi-secure-boot-on-intel-corei7-64/4862

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Establish a Chain of Trust

Secure Boot on x86 Platforms with meta-secure-core/meta-efi-secure-boot and Mender

distro.conf image.bb

MACHINE_FEATURES:append = " \ IMAGE_INSTALL:append = " \
efi \ tpm2-tools \
tpm2 \ libtss2-tcti-device \
" efitools \
DISTRO_FEATURES:append = " \ seloader \
security \ update-signed-kernel-state-script \
tpm2 \
efi-secure-boot \
Deploy kernel and signature to boot partition.

They cannot be verified on rootfs partition.
MOK_SB = ""
SIGNING_MODEL = "user"

#
#
#
#

Mender processes IMAGE BOOT_FILES and has some issues with multiline parsing
IMAGE_BOOT_FILES:append = " ${KERNEL_IMAGETYPE} ${KERNEL_IMAGETYPE}${SB_FILE_EXT}"

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Establish a Chain of Trust

Secure Boot on x86 Platforms with meta-secure-core/meta-efi-secure-boot and Mender

overwritten
90_mender_boot_grub.cfg

mender_kernel_path=
if ["${drop_to_grub_prompt}" = "no"];
then
search --no-floppy --label --set=root boot
if linux "${mender_kernel_path}/${kernel_imagetype}" root="${mender_kernel_root}" ${bootargs};
then
if test -n "${initrd_imagetype}" -a test -e
then
initrd "${mender_kernel path}/${initrd_imagetype}"
fi
maybe pause "Pausing before booting."
boot
fi
maybe pause "Pausing after failed boot."

${mender_kernel_path}/${initrd_imagetype}";

fi

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Make use of PCRs

Encrypt a userdata partition on first boot and use a TPM 2.0 device as key

Bind the encryption to TPM PCR(s)
e Usually PCR 7 (secure boot state) or 8-7
e Encrypted partition without the need for user interaction (entering a password)
e If PCR(s) change, data can not be unlocked with TPM

o Stays locked if a device gets tampered
o Can be restored with backup password

27

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Make use of PCRs

Encrypt a userdata partition on first boot and use a TPM 2.0 device as key

[e <] LUKS L

systemd systemd

systemd service encryption script encryption script

- triggers encryption

- write LUKS header on existing partition
- runs before data.mount

cryptsetup reencrypt --encrypt - link TPM to LUKS device
systemd-cryptenroll

- actual online encryption G v

cryptsetup reencrypt

~

28

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Make use of PCRs

Encrypt a userdata partition on first boot and use a TPM 2.0 device as key

distro.conf

PACKAGECONFIG:append:pn-cryptsetup = " cryptsetup veritysetup udev luks2"
PACKAGECONFIG:append:pn-systemd = " cryptsetup tpm2"

systemd_%.bbappend

do_install:append() {
install -d ${D}${libdir}/cryptsetup
install -m 0755 ${WORKDIR}/build/libcryptsetup-token-systemd-tpm2.so \

${D}${1libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so
}

FILES:${PN}:append = " \
${base_libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so \
${1libdir}/cryptsetup/libcryptsetup-token-systemd-tpm2.so \

Only needed with kirkstone!

29

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Make use of PCRs

Encrypt a userdata partition on first boot and use a TPM 2.0 device as key

encrypt-data.sh

crypttab

echo "Generating a new key..."
data UUID=<data-uuid> none tpm2-device-auto,tpm2-pcrs=7 /usr/bin/openssl rand -base64 44 > ${tmp_key_file}

At early boot and when the system manager echo "WPiEing encrypt%on Teaders...".
configuration is reloaded, /etc/crypttab is /bin/cat "${tmp_key file}" | /usr/sbin/cryptsetup reencrypt --encrypt \
I T e o ey e --type luks2 --key-slot=1 --batch-mode --init-only --reduce-device-size 32M

units by systemd-cryptsetup-generator(8). --offset="${OFFSET}" "${data_dev}" data

Enrolling the TPM2 integration only works after the online encryption step
is finished.

echo "Encrypting the data partition..."

/bin/cat ${tmp_key file} | /usr/sbin/cryptsetup reencrypt \

- UUID=<data-uuid> /data ext4 rw 0 2 --offset="${OFFSET}" "${data_dev}"

+ /dev/mapper/data /data ext4 rw 0 2

echo "Deploying TPM2 keys..."
Mender also modifies fstab in a /usr/bin/systemd-cryptenroll --tpm2-device=auto --tpm2-pcrs=7 \
ROOTFS_POSTPROCESS_COMMAND --unlock-key-file=${tmp_key file} "${data_dev}"

https://www.freedesktop.org/software/systemd/man/latest/systemd-cryptsetup-generator.html#

€ inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

More ideas

e Utilize the Linux Integrity Measurement Architecture - maybe together with keylime.dev

sensitive counter or read-only information in NVRAM

31

https://keylime.dev/

Building Trust - Use Cases iImplementation of TPM 2.0 in Embedded Systems

R "
4 4
4 4

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Recap
Chances and Risks

TPM 2.0 can help trusting devices, e.g. with

Hardened cryptographic operations and random number generation
Trusted kernels with secure boot (utilizes the key infrastructure on x86)
Measure system state and integrity (PCRs)

Secure, tamper resistant storage for (read-only) information (NVRAM)
and a lot more

33

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Recap
Chances and Risks

TPM 2.0 devices are affordable, available and well supported
e But integrating one is an active decision in embedded systems

e Just using a TPM is not a no-brainer that makes a device trustworthy
o Attacks on TPM exist (e.g. I2C/SPI bus sniffing)
o Who owns and controls the platform?
o Keys based on the endorsement hierarchy can be correlated to a single TPM
o Do you trust the TPM vendor, platform manufacturer and the device provisioning?

€ inovex

Thank you!

Qu eStiO nS? Anna-Lena Marx

Embedded Systems Engineer

B @anna-lena-marx-embedded

() @Allegra42

€ inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Learn more about TPM 2.0

https://trustedcomputinggroup.org/

Course | Trusted Computing 1101: Introductory Trusted Platform Module (TPM) usage | OpenSecurityTraining2
Course | Trusted Computing 1102: Intermediate Trusted Platform Module (TPM) usage | OpenSecurityTraining2
https://github.com/tpm2-software/tpm2-tss

https:/tom2-tools.readthedocs.io/en/latest/
https://uapi-group.org/specifications/specs/linux_tpm_pcr_registry/
https://www.freedesktop.org/software/systemd/man/255/systemd-cryptenroll.html

. https:/Qpointer.net/blog/authenticated-boot-and-disk-encryption-on-linux.html

z ' inter.net/blog/brave-new-trusted-boot-world.html

https://trustedcomputinggroup.org/
https://apps.p.ost2.fyi/learning/course/course-v1:OpenSecurityTraining2+TC1101_IntroTPM+2024_v1/home
https://apps.p.ost2.fyi/learning/course/course-v1:OpenSecurityTraining2+TC1102_IntermediateTPM+2024_v1/home
https://github.com/tpm2-software/tpm2-tss
https://tpm2-tools.readthedocs.io/en/latest/
https://uapi-group.org/specifications/specs/linux_tpm_pcr_registry/
https://www.freedesktop.org/software/systemd/man/255/systemd-cryptenroll.html
https://0pointer.net/blog/authenticated-boot-and-disk-encryption-on-linux.html
https://0pointer.net/blog/brave-new-trusted-boot-world.html
https://git.yoctoproject.org/meta-security/tree/meta-integrity/README.md?h=scarthgap
https://github.com/Wind-River/meta-secure-core/tree/scarthgap/meta-integrity
https://ima-doc.readthedocs.io/en/latest/ima-concepts.html
https://github.com/tpm2-software/tpm2-pkcs11
https://github.com/tpm2-software/tpm2-pkcs11/blob/master/docs/SSH.md
https://github.com/tpm2-software/tpm2-openssl

© inovex Building Trust - Use Cases and Implementation of TPM 2.0 in Embedded Systems

Utilize NVRAM storage

For additional device identity, persistent and tamper resistant counters, ...

Write to NV space

2N & S # Establish the policy session

tpm2_startauthsession -S session.dat --policy-session
tpm2_policycommandcode -S session.dat TPM2_CC_NV_Write
tpm2_policynvwritten -S session.dat c

tpm2_startauthsession -S session.dat
tpm2_policycommandcode -S session.dat TPM2_CC_NV_Write
tpm2_policynvwritten -S session.dat -L nvwrite.policy c

tpm2_flushcontext session.dat
Write content

N !
ot a typo tpm2_nvwrite 0x1000000 -i testWrite.txt -P session:session.dat

c -> clear state

Define a NV space tpm2_nvreadpublic
0x1000000:
. ” . i w . . name: 00Obfbl2a225aad716468ad1f173cfe31dd7e26e952bf4ead2d91b747e0e6ab19410
tpm2_nvdefine -s 20 -a "ownerread|authread|policywrite" -L nvwrite.policy el ellgen i
Output: nv-index: ©x1000000 friendly: sha2s6
value: OxB
tpm2_nvreadpublic attributes:
0x1000000: friendly: policywrite|ownerread|authread|written
name: 00@bbf41le8a6f49fbbdcf194a41a916126ab8ccbba68bbl7ad4058ef3623b3d41bfb value: ©x20060008
hash algorithm: size: 20
friendly: sha256 authorization policy:
value: OxB B7AFECEESBF7BCBD5078F264DE85F7E361DC84F745DA7EFA34E91FDAF200EESB
attributes:
friendly: policywrite|ownerread|authread tpm2_nvread -C o 0x1000000 -s 20
value: 0x60008 Output: “hello® Owner hierarchy (default)
size: 20 ...

