
Patching
Unpatchable Files

Anna-Lena Marx
Yocto Project Summit
December 5th, 2024 · virtual

Anna-Lena Marx

Embedded Systems Developer

● since 2015 with inovex
● has a Master’s degree in Embedded Systems
● studies Electrical Engineering as a hobby

Main Topics

● Embedded Systems
● Yocto Linux
● Linux Kernel
● AOSP/AAOS
● IoT

2

Anna-Lena Marx

marx.engineer

anna-lena.marx
@inovex.de

http://www.linkedin.com/in/anna-lena-marx-embedded
https://marx.engineer
mailto:anna-lena.marx@inovex.de
mailto:anna-lena.marx@inovex.de

What do I mean with
“unpatchable” files?

3

.bbclass files (Classes)

4

● Used to abstract common functionality
● Shared between multiple recipes
● Used via inherit in a recipe

Well-known classes

● archiver
● autotools
● cmake

● cve-check
● image
● kernel
● …

.inc files

5

● Shared between recipes to encapsulate common behavior
● Always part of a recipe via include or require

… causes BitBake to parse whatever file you specify,
and to insert that file at that location.

If used in a .bb file

-> just a part of a recipe

-> can be overwritten using .bbappend for a specific recipe!

Special case: .inc files used in bbclass files
-> part of this talk

Hold on a second…

Do you really need to
patch a bbclass file?

6

Valid cases for patching .bbclass files

7

● When copying to your own layer does not make sense,
e.g. the class is used in the original layer itself

● If you want to keep track of your (LTS) upstream and stay as
close to the original as possible
e.g. while working on submitting the change

8

Why did I want to modify
an existing .bbclass file
in first place?

9

diff --git a/meta-mender-core/classes/mender-artifactimg.bbclass
b/meta-mender-core/classes/mender-artifactimg.bbclass
index cdb07551..3dd2a4ba 100644
--- a/meta-mender-core/classes/mender-artifactimg.bbclass
+++ b/meta-mender-core/classes/mender-artifactimg.bbclass
@@ -130,7 +130,7 @@ IMAGE_CMD:mender () {
 mender-artifact write rootfs-image \
 -n ${MENDER_ARTIFACT_NAME} \
 $extra_args \
- $image_flag ${IMGDEPLOYDIR}/${ARTIFACTIMG_NAME}.${ARTIFACTIMG_FSTYPE} \
+ $image_flag ${IMGDEPLOYDIR}/${ARTIFACTIMG_NAME}.${ARTIFACTIMG_FSTYPE}${DM_VERITY} \
 ${MENDER_ARTIFACT_EXTRA_ARGS} \
 -o ${IMGDEPLOYDIR}/${IMAGE_NAME}${IMAGE_NAME_SUFFIX}.mender
 }

…

The official solution for
bbclass files

10

This is simply because you can't patch a bbclass.
You'll have to copy it into your layer with the modification,
or work upstream to get a suitable change merged.

Ross

https://docs.yoctoproject.org/pipermail/yocto/2018-October/042858.html

11

https://docs.yoctoproject.org/pipermail/yocto/2018-October/042858.html

Upstream your work

Always the best solution.
Your work could be relevant for others, too!

But upstreaming and maybe backporting work to all
LTS versions takes some time.

12

Copy the .bbclass file into your own layer with modifications

Generally the recommended solution in Yocto!

● Full control over the whole class
● Fully responsible in keep it the copies in sync with upstream

layer

13

Caution!

During a build, the OpenEmbedded build system looks in the layers from the top of
the list down to the bottom in that order.

For proper overwriting, your own layer needs to be above the one to overwrite!
Layer priorities alone do not change that!

That would have meant to me

14

Enable Mender using system partitions with dm-verity

● mender-artifactimg.bbclass controls image creation
-> needed modification

● mender-part-images.bbclass creates WKS file during compile
time
-> needed modification

● Both used in mender-setup.bbclass

So why did I not like that approach for my problem?

A simple change would lead to copying three .bbclass files into an
own layer (in this special case)

-> Vendoring

● History and branch/tag information is lost
● Divergent states between vendored version and upstream
● No upstream updates without further (manual) actions
● Maybe strange errors if not noticing the original file has

changed

15

Is there anything
better?

16

Variation of the full file copy

● Create a .bbclass file with the same name in your layer
● Inherit from the original
● Override the target function

But still same vendoring issues as before but with a reduced scope.

Does not work in each case.

17

Not every idea is a good one

18

Regarding patches:
any files with .patch extension that you add to

the SRC_URI variable will be applied after
fetching and unpacking all sources.

It doesn't matter how/where you add these files, it can be in the
original .bb, .bbappend, .inc or even in .bbclass files.

The main point is the SRC_URI variable.

I've created a patch file in our bsp layer of the same name as the bbclass
file I want to patch but the patch is not being applied.

https://stackoverflow.com/questions/77018036/need-clarification-regarding-when-to-use-bb-inc-file-in-yocto
https://docs.yoctoproject.org/pipermail/yocto/2018-October/042857.html

https://stackoverflow.com/questions/77018036/need-clarification-regarding-when-to-use-bb-inc-file-in-yocto
https://docs.yoctoproject.org/pipermail/yocto/2018-October/042857.html

19

 recipe.bb

 some.patch

meta-mylayer/some-software
source directory

do_fetch

build/tmp/work/arch/some-software
${WORKDIR}/${BP}-${PV}

${B}

do_unpack

do_patch

do_configure

do_build

do_install

do_package

20

 recipe.bb

 some.patch

meta-mylayer/some-software
source directory

do_fetch

build/tmp/work/arch/some-software
${WORKDIR}/${BP}-${PV}

${B}

do_unpack

do_patch

do_configure

do_build

do_install

do_package

21

 recipe.bb

 some.patch

meta-mylayer/some-software
source directory

do_fetch

${S} (often: git)
Downloaded sources

 some.patch

build/tmp/work/arch/some-software
${WORKDIR}/${BP}-${PV}

${B}

do_unpack

do_patch

do_configure

do_build

do_install

do_package

SRC_URI

22

 recipe.bb

 some.patch

meta-mylayer/some-software
source directory

do_fetch

${S} (often: git)
Downloaded sources

 some.patch

build/tmp/work/arch/some-software
${WORKDIR}/${BP}-${PV}

${B}

do_unpack

do_patch

do_configure

do_build

do_install

do_package

SRC_URI

23

 recipe.bb

 some.patch

meta-mylayer/some-software
source directory

do_fetch

${S} (often: git)
Downloaded sources

 some.patch

build/tmp/work/arch/some-software
${WORKDIR}/${BP}-${PV}

${B}

do_unpack

do_patch

do_configure

do_build

do_install

do_package

No recursive patching
e.g. patch the recipe itself

is not possible!

24

 recipe.bb

 some.patch

meta-mylayer/some-software
source directory

do_fetch

${S} (often: git)
Downloaded sources

 some.patch

build/tmp/work/arch/some-software
${WORKDIR}/${BP}-${PV}

${B}

do_unpack

do_patch

do_configure

do_build

do_install

do_package

25

 recipe.bb

 some.patch

meta-mylayer/some-software
source directory

do_fetch

${S} (often: git)
Downloaded sources

 some.patch

build/tmp/work/arch/some-software
${WORKDIR}/${BP}-${PV}

${B}

do_unpack

do_patch

do_configure

do_build

do_install

do_package

26

 recipe.bb

 some.patch

meta-mylayer/some-software
source directory

do_fetch

${S} (often: git)
Downloaded sources

 some.patch

build/tmp/work/arch/some-software
${WORKDIR}/${BP}-${PV}

${B}

do_unpack

do_patch

do_configure

do_build

do_install

do_package

do_patch applies patches to
the recipes source files

which are located in ${S}!

27

 recipe.bb

 some.patch

meta-mylayer/some-software
source directory

do_fetch

${S} (often: git)
Downloaded sources

 some.patch

build/tmp/work/arch/some-software
${WORKDIR}/${BP}-${PV}

${B}

do_unpack

do_patch

do_configure

do_build

do_install

do_package

bbclass files stay in the
source directory!

Patches are only applied to
code in ${S}!

Not every idea is a good one

28

Regarding patches:
any files with .patch extension that you add to

the SRC_URI variable will be applied after
fetching and unpacking all sources.

It doesn't matter how/where you add these files, it can be in the
original .bb, .bbappend, .inc or even in .bbclass files.

The main point is the SRC_URI variable.

I've created a patch file in our bsp layer of the same name as the bbclass
file I want to patch but the patch is not being applied.

https://stackoverflow.com/questions/77018036/need-clarification-regarding-when-to-use-bb-inc-file-in-yocto
https://docs.yoctoproject.org/pipermail/yocto/2018-October/042857.html

https://stackoverflow.com/questions/77018036/need-clarification-regarding-when-to-use-bb-inc-file-in-yocto
https://docs.yoctoproject.org/pipermail/yocto/2018-October/042857.html

KAS Patching Mechanism

● Available in KAS, but barely documented
● Intended use case unknown

● Exactly the thing I was looking for
○ Really clean
○ Maintainable
○ Integrates in the existing workflow
○ Applying the patch will fail on major upstream changes

-> but this is what I wanted

● And I used KAS already

https://kas.readthedocs.io/en/3.0.2/userguide.html?highlight=patch
29

https://kas.readthedocs.io/en/3.0.2/userguide.html?highlight=patch

30

diff --git a/meta-mender-core/classes/mender-artifactimg.bbclass
b/meta-mender-core/classes/mender-artifactimg.bbclass
index cdb07551..3dd2a4ba 100644
--- a/meta-mender-core/classes/mender-artifactimg.bbclass
+++ b/meta-mender-core/classes/mender-artifactimg.bbclass
@@ -130,7 +130,7 @@ IMAGE_CMD:mender () {
 mender-artifact write rootfs-image \
 -n ${MENDER_ARTIFACT_NAME} \
 $extra_args \
- $image_flag ${IMGDEPLOYDIR}/${ARTIFACTIMG_NAME}.${ARTIFACTIMG_FSTYPE} \
+ $image_flag ${IMGDEPLOYDIR}/${ARTIFACTIMG_NAME}.${ARTIFACTIMG_FSTYPE}${DM_VERITY} \
 ${MENDER_ARTIFACT_EXTRA_ARGS} \
 -o ${IMGDEPLOYDIR}/${IMAGE_NAME}${IMAGE_NAME_SUFFIX}.mender
 }
…

meta-vgrid/patches/meta-mender/mender-include-dm-verity-image.patch

 meta-mender:
 layers:
 meta-mender-core:
 branch: kirkstone
 url: https://github.com/mendersoftware/meta-mender.git
 path: sources/meta-mender
 patches:
 dm-verity:
 repo: meta-vgrid
 path: patches/meta-mender/mender-include-dm-verity-image.patch

kas/common.yml

31

Other management tools

Repo / bitbake-layers (create-layers-setup) / …

● No support for applying patches

Own script or hook

● Mixed feelings
● Another tool
● Maybe error-prone

To sum it up

32

What strategy is the best for you?

1. Don’t patch .bbclass files
2. Upstream your changes

Copy the bbclass file to your own layer /

Use KAS or additional tooling/scripts

33

Remember

● Don’t use patching as a general solution to work with Yocto at all!
● Don’t use patching over existing, well-known workflows like

.bbappend!
● Keep in mind who will maintain a project in the future, minimize

pitfalls

34

If overwriting a bbclass file by copying to your own layer does
not work out, check the layer ordering, not only their priority!

In the end

● A solution must fit your (and the project’s) needs
● Don’t introduce a tool like KAS if not using it already
● But don’t create your own workflow and tooling from scratch,

there is already a large zoo of management solutions and tools

35

I would love to see something like .bbappend for .bbclass files
directly inside Yocto/OpenEmbedded in future!

But - how to avoid misuse?

Do you utilize or know
about other solutions or
strategies?

36

Thank you!
Time for questions
and discussions!

37

inovex is an IT project
center driven by innovation
and quality, focusing its
services on ‘Digital
Transformation’.

● founded in 1999
● 500+ employees
● 8 offices across

Germany

www.inovex.de

Anna-Lena Marx
Embedded Systems Developer

anna-lena.marx@inovex.de

mailto:anna-lena.marx@inovex.de

